News & Articles

Learn about vacuum sputtering and thin film evaporation technologies.

What is Glancing Angle Deposition (GLAD)?

blue flares decorative image

Glancing angle deposition (GLAD) is a thin film deposition technique in which a substrate is placed at an angle to the direction of the coating vapor flux, while that substrate is rotated or manipulated to control the film’s characteristics and growth. It is primarily used as an electron-beam thermal evaporation process, but it is also sometimes used with sputtering coatings.

GLAD is a refinement of oblique angle deposition (OAD). Oblique means slanted less than 90 degrees. In OAD, the substrate is stationary and placed at an oblique angle to the direction of deposition flux so as to control columnar and helical nanostructure growth.

What is Diamond-Like Carbon (DLC) Tribology Coating?

blue crystal decorative image

Diamond-Like Carbon (DLC) is a type of amorphous carbon material that exhibits some of the properties of diamonds like extreme hardness, together with low friction that is a characteristic of graphite, along with a strong resistance to corrosion. Amorphous in this instance means an irregular mixture of both graphite and diamond forms of carbon without a consistent crystalline bonding structure, but with an irregular mixture of carbon cubic and hexagonal bonding that is not naturally occurring.

What is Plasma Enhanced Chemical Vapor Deposition (PECVD)?

chaotic yellow lines decorative image

Plasma Enhanced Chemical Vapor Deposition (PECVD) is a low temperature vacuum thin film deposition process with a very strong position in the semiconductor industry due to its ability to apply coatings on surfaces that would not be able to withstand the temperatures of more conventional CVD processes.

Conventional CVD applies heat to the substrate to be coated or to the area immediately around the substrate to drive the chemical reactions. Precursor reactive gases are introduced into the deposition chamber which either react immediately with the surfaces to be coated, or combine in the deposition chamber to form new compounds which grow films on the substrate surface.

What is Chemical Vapor Deposition (CVD)?

orange honeycomb tech decorative imageChemical Vapor Deposition, commonly referred to as CVD, refers to a broad range of thin film deposition techniques that are widely used for producing high quality, high-performance solid coatings or polymers. While there are a wide variety of specific CVD processes, what they all have in common is a chemical reaction of a gaseous chemical precursor driven by either heat or plasma to produce dense thin films on a substrate. …

Pre-Cleaning & Etching for PVD Coatings

tech bubbles decorative imagePre-cleaning of substrates before PVD coating is an essential first step of surface preparation for thin film deposition by removing contaminants such as oxides, hydrocarbons and water molecules, and to make for good adhesion of deposition layers and be certain the coatings perform defect free.

One critical reason for pre-cleaning just prior to deposition is to remove the native organics (primarily oxidation) that form a barrier layer on the substrate surface just from being exposed to regular atmosphere. Even as little as a couple nanometers of this natural barrier layer will prevent proper adhesion or effect the conductivity of the layer stack which is absolutely critical for semiconductors. …

What is Co-Sputtering and Co-Evaporation?

Co-Sputtering CathodeSputtering and Thermal Evaporation are two of the most common Physical Vapor Deposition PVD Thin Film Coating process techniques. Performed in a high vacuum environment, these methods are at the heart of the semiconductor, optics, photonics, medical implant, high performance auto and aero industries.

“Co” means mutual, common – more than one. Co-Sputtering and Co-Evaporation means more than one coating material being applied to a substrate that allows for the creation of a wide range of new and remarkable compositions and alloys with unique and amazing qualities not possible without this rapidly expanding thin film technology. …

What is MF or Mid-Frequency AC Sputtering?

Mid-Frequency AC SputteringMid-frequency AC Sputtering has become a mainstay of thin film sputtering technologies, particularly for the deposition of dielectric or non-conducting film coatings on surfaces such as solar panels, optical glass such as telescope mirrors or rolls of plastic. It is largely replacing RF Sputtering for coating dielectrics because it operates in the kHz rather than MHz range requiring less sophisticated and expensive power sources and is a process that is adaptable to large scale applications.

MF or Mid-frequency AC power supplies cover a wide range of voltage outputs between 300 V to 1200 V – generally in the 25 to 300 kW range – at frequencies between 20 to 70 kHz with 40 kHz used most commonly. It is a process frequently used with Reactive Sputtering where a reactive gas such as oxygen or nitrogen is introduced into the plasma to form oxides or nitrides on the substrate.

Two cathodes are used with an AC current switched back and forth between them which cleans the target surface with each reversal to reduce the charge build up on dielectrics that leads to arcing which can spew droplets into the plasma and prevent uniform thin film growth. …

What is PVD Gold Sputtering?

PVD Gold SputteringGold is one of the most beautifully luminescent and valuable metals on Earth because of its ability to throw light, reflect energy and resist tarnishing. PVD or Physical Vapor Deposition Gold Sputtering is commonly used in the watch and jewelry industry to produce coatings that are hard and durable and won’t rub off with constant contact with the skin or clothes and lose it sheen.

PVD Gold Sputtering is also used for coating circuit panels and electronic components due to its excellent conductivity, for coating optical fibers, batteries and high end faucets and fixtures. Gold Sputtering processes are invaluable for biomedical implants that serve as radiopaque coatings that are visible in x-rays and lifesaving procedures like coating tissue samples to make them visible for scanning under electron microscopes.

Gold Sputtering coatings are a thin film deposition process where gold or a gold alloy is bombarded with high energy ions in a vacuum chamber resulting in the gold atoms or molecules being “Sputtered” into the vapor and condensing on the substrate to be coated such as jewelry, circuit boards or medical implants. …

What is Pulsed DC Sputtering?

blue sonar

Pulsed DC Sputtering is a physical vapor deposition technique with a wide range of applications in the semiconductor, optical and industrial coating industries. Pulsed DC Sputtering is particularly effective for the sputtering of metals and dielectric coating – coatings which are insulating non-conducting materials that can acquire a charge.

It is most often used with Reactive Sputtering where there is a chemical reaction occurring in the plasma between the vaporized target material and ionized gases like Oxygen to form deposition molecules such as silicon oxides. Pulsed DC Sputtering has revolutionized the Reactive Sputtering of “difficult” dielectric materials like Alumina, Titania and Silica with high deposition rates that are impossible with straight DC Sputtering alone. …